

Connected and Automated Vehicles

AYMERIC ROUSSEAU, DOMINIK KARBOWSKI, JOSHUA AULD, MAHMOUD JAVANMARDI, RANDY WEIMER, OMER VERBAS, NAMDOO KIM, EHSAN ISLAM, DALIANG SHEN

2017 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review

June 8, 2017

Project Overview

Timeline	Barriers				
 Project start date: FY17 Project end date: FY19 Percent complete: 20% 	 Bring technologies to market faster Integrate a diverse set of simulation tools Accelerate technology evaluation 				
Budget	Partners				
FY17 Funding: \$1471K	 George Mason University (Sub) University of Illinois in Chicago (Sub) Texas A&M University (Sub) UNSW Sydney (Sub) National Laboratories (LBNL, ORNL, NREL, INL) 				

Project Relevance

VTO is Expanding Focus to the Transportation System Level

Argonne New Capabilities Support New VTO Focus

A Workflow Is Being Developed to Estimate the Energy Consumption, Cost and GHG Impact of Smart Mobility at the Metropolitan Area

POLARIS Models the Transportation System of Entire Metro Area

POLARIS Is Uniquely Designed to Study Energy-Efficient Mobility Systems (EEMS)

- POLARIS is designed for large-scale studies:
 - Written in C++, multi-threading
 - Chicago model ≈ 10M travelers ≈ 30M trips (per day) ≈ 3h simulation time (vs. several days for other tools)
- POLARIS is open-source, with a dedicated team of developers and transportation experts at Argonne
- POLARIS is designed from the ground-up to accommodate emerging modes and transportation technologies and evaluate their energy-impact:
 - Agent-based: each traveler is modeled individually, has specific behavior and adjust behavior to transportation supply
 - Activity-based: travel demand is derived from modeled activities (work, school, leisure, etc.)
 - Integrated: demand (e.g. origin/destination) and supply (routing, traffic flow) are integrated in the same platform, allowing direct interactions (e.g. replanning/rerouting in case of unusual travel time)
 - Energy: POLARIS + Autonomie outputs energy consumption in the context of evolving vehicle powertrain technologies

- POLARIS & Autonomie support research across DOE's SMART Pillars:
 - CAV: how CAVs will change demand and improve operations (EEMS002)
 - MDS: modeling how people will travel in the context of new mobility solutions (EEMS005)
 - MM: how public transit will interact with other modes (EEMS004)
 - Urban => Development of fast calibration to be able to create POLARIS models for other cities more easily (EEMS006)
- Our team is multidisciplinary, combining mechanical, electrical and control engineering as well as behavior science, operations research, energy modeling, computer science and software engineering

Milestones

	17Q1	17Q2	17Q3	17Q4	18Q1	18Q2	18Q3	18Q4
Energy impact of various CAV technologies								
Impact of CAV technologies on travel demand (VMT) and energy								
Energy Impact of Non Coordinated fully autonomous vehicles								
Analyze time-use and time valuation of travelers using public transit and shared-mobility services								
Multimodal/Transit Model								

for horizon (e.g. next 200m)

Implementation-Oriented Control: Model-Predictive Control (MPC)

- MPC is a framework for taking into account continuous look-ahead information for making optimal control decision, while including a feedback-loop (receding horizon)
- Very efficient when model is linear or quadratic => develop quadratic models for conventional vehicle
- Scenario: optimal torque for highway cruise-control => what optimal torque?

Autonomie Vehicle

Models

Technical Accomplishments

Framework for Integrated Powertrain-CAV Simulation

 Developed a Simulink-based framework that reuses Autonomie powertrain models and includes models of intersections, human driving and connected and automated driving

 Applying optimal control theory to velocity-powertrain control problem for maximum energy savings

Use Case Example: Highway CACC with Various Powertrains

- Multi-vehicle run with a mix of powertrain technologies
- Lead vehicle follow EPA Highway drive cycle
- Following vehicles are "human-driven" at low-speeds, and switch to CACC above
 40 mph
- Each vehicle aerodynamic drag is reduced as a function of gap (and speed?)

80%

Technical Accomplishments

Evaluated Impact of CAVs on Travel Demand at the Regional Level

- Approach: model the impact of CAVs on both demand and operations
- Improved POLARIS behavior and traffic flow models:
 - Vehicle-choice model to assign CAVs to particular households
 - Various scenarios for Value of Travel Time (VOTT) based on literature review
- Updated traffic flow model to dynamically change each segment capacity based on the number of CAV present on that link
- Performed a case study for Chicago metro area, with 30% and 50% reduction of VOTT, and CAV penetration levels up to 75%; up to 40% fuel consumption increase due to higher VMTs
- Larger reduction of VOTT increases fuel use due to longer trips

Geographic Distribution of Fuel Use Changes

Effect of Population Change on Energy for Detroit

Substantial shifts in energy use seen when comparing SEMCOG to DFC forecast – results for 2010 vehicle technology

Energy Use Results (gallons)										
	Polaris \		Regional Vehicle							
	Distrib	ution	Distribution							
Scenario	2010 Veh	2040 Veh	2010 Veh	2040 Veh						
Baseline (2010)	2,121,869		2,122,007							
SEMCOG 2040	2,199,718	1,497,056	2,198,298	1,574,894						
DFC 2040	1,952,492	1,329,740	1,951,156	1,329,518						
%change										
SEMCOG - Base	3.7%	-29.4%	3.6%	-25.8%						
DFC - Base	-8.0%	-37.3%	-8.1%	-37.3%						
DFC - SEMCOG	-11.2%	-11.2%	-11.2%	-15.6%						

Response to Previous Year Reviewers' Comments

Project was not reviewed in the past

Partnerships and Collaborations

Remaining Challenges and Barriers

- Travel behavior modeling of current and future modes is highly uncertain
- Need multiple data sets (e.g., travel surveys are expensive) to develop better models, especially behavior models need data, often from surveys
- Energy benefits is highly dependent of scenarios. Defining and selecting appropriate scenarios while maintaining acceptable computational time is challenging
- Developing processes leveraging HPC is a requirements: even if POLARIS runs the entire Chicago population in 2-3h vs 2-3 days for other models, running hundreds of simulations to quantify the uncertainty is challenging
- Transferability needs to be improved as developing POLARIS models of new cities is expensive, both for data gathering, processing and calibration

Future Work

POLARIS:

- Traffic flow model will be improved to more realistically represent the movement of CAVs on the road
- New model of Zero Occupancy vehicles (ZOVs)
- New behavioral model for activity-generation, scheduling, mode-choice
- Connect to vehicle choice modeling for realistic fleet distribution
- Transferability for national level energy evaluations
- New modes: transit, bike, TNCs

CAV control:

- Integrate new framework with Autonomie eco-system
- Improve human driver models
- Implement CAV controllers with optimal control for advanced powertrain technology vehicles
- Deploy new tools and processes with AMBER

Any proposed future work is subject to change based on funding levels

Summary

- Emerging mobility trends, such as CAVs, will result in profound changes in the way people make their travel choices and the way vehicle operate
- There is a wide uncertainty about energy impacts, and DOE VTO EEMS initiative aims at better estimation
- Key achievements:
 - Performed preliminary study estimating energy benefits of CAVs using drive cycle filtering
 - Developed a new framework for Integrated Powertrain-CAV Simulation
 - Initiated work on energy-efficient CAVs using optimal control
 - Improved POLARIS to model CAVs:
 - Traffic flow model: congestion reduction due to increased capacity
 - Value of travel time reduced for owners of CAVs
 - Model of vehicle CAV choice
- Future work will focus on developing new CAV controls, new modes, new behavior models, improving traffic flow models and running large-scale case studies to estimate energy impact of CAVs.

